

### Bounds on the Largest Eigenvalue a of Distance Matrix





#### **Natalie Denny**

Advisor: John Caughman Second Reader: Derek Garton

| 0 | 1 | 2 | 2 | 1 | 2 | 3 | 3 | 4 | 5 | 4 | 4 | 3 | 3 | 2 | 1 | 2 | 2 | 3 | 3 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 0 | 1 | 2 | 2 | 3 | 4 | 3 | 5 | 4 | 3 | 3 | 2 | 2 | 1 | 2 | 2 | 3 | 4 | 3 |
| 2 | 1 | 0 | 1 | 2 | 3 | 3 | 2 | 4 | 3 | 2 | 3 | 1 | 2 | 2 | 3 | 3 | 4 | 5 | 4 |
| 2 | 2 | 1 | 0 | 1 | 2 | 2 | 1 | 3 | 3 | 2 | 4 | 2 | 3 | 3 | 3 | 4 | 3 | 4 | 5 |
| 1 | 2 | 2 | 1 | 0 | 1 | 2 | 2 | 3 | 4 | 3 | 5 | 3 | 4 | 3 | 2 | 3 | 2 | 3 | 4 |
| 2 | 3 | 3 | 2 | 1 | 0 | 1 | 2 | 2 | 3 | 3 | 4 | 4 | 5 | 4 | 2 | 3 | 1 | 2 | 3 |
| 3 | 4 | 3 | 2 | 2 | 1 | 0 | 1 | 1 | 2 | 2 | 3 | 3 | 4 | 5 | 3 | 4 | 2 | 2 | 3 |
| 3 | 3 | 2 | 1 | 2 | 2 | 1 | 0 | 2 | 2 | 1 | 3 | 2 | 3 | 4 | 4 | 5 | 3 | 3 | 4 |
| 4 | 5 | 4 | 3 | 3 | 2 | 1 | 2 | 0 | 1 | 2 | 2 | 3 | 3 | 4 | 3 | 3 | 2 | 1 | 2 |
| 5 | 4 | 3 | 3 | 4 | 3 | 2 | 2 | 1 | 0 | 1 | 1 | 2 | 2 | 3 | 4 | 3 | 3 | 2 | 2 |
| 4 | 3 | 2 | 2 | 3 | 3 | 2 | 1 | 2 | 1 | 0 | 2 | 1 | 2 | 3 | 5 | 4 | 4 | 3 | 3 |
| 4 | 3 | 3 | 4 | 5 | 4 | 3 | 3 | 2 | 1 | 2 | 0 | 2 | 1 | 2 | 3 | 2 | 3 | 2 | 1 |
| 3 | 2 | 1 | 2 | 3 | 4 | 3 | 2 | 4 | 2 | 1 | 2 | 0 | 1 | 2 | 4 | 3 | 5 | 4 | 3 |
| 3 | 2 | 2 | 3 | 4 | 5 | 4 | 3 | 3 | 2 | 2 | 1 | 1 | 0 | 1 | 3 | 2 | 4 | 3 | 2 |
| 2 | 1 | 2 | 3 | 3 | 4 | 5 | 4 | 4 | 3 | 3 | 2 | 2 | 1 | 0 | 2 | 1 | 3 | 3 | 2 |
| 1 | 2 | 3 | 3 | 2 | 2 | 3 | 4 | 3 | 4 | 5 | 3 | 4 | 3 | 2 | 0 | 1 | 1 | 2 | 2 |
| 2 | 2 | 3 | 4 | 3 | 3 | 4 | 5 | 3 | 3 | 4 | 2 | 3 | 2 | 1 | 1 | 0 | 2 | 2 | 1 |
| 2 | 3 | 4 | 3 | 2 | 1 | 2 | 3 | 2 | 3 | 2 | 3 | 5 | 4 | 3 | 1 | 2 | 0 | 1 | 2 |
| 3 | 4 | 5 | 4 | 3 | 2 | 2 | 3 | 1 | 2 | 3 | 2 | 4 | 3 | 3 | 2 | 2 | 1 | 0 | 1 |
| 3 | 3 | 4 | 5 | 4 | 3 | 3 | 4 | 2 | 2 | 3 | 1 | 3 | 2 | 2 | 2 | 1 | 2 | 1 | 0 |

#### **Overview**

- "On the Largest Eigenvalue of the Distance Matrix of a Connected Graph" by Bo Zhou and Nenad Trinajstic
- Application to Chemistry/Chemical Graph Theory
- The Distance Matrix of a Graph
- Bounds on the Largest Eigenvalue
- Nordhaus-Gaddum type result





### **Application to Chemistry**

Eigenvalues of distance matrices are used in chemical QSAR (Quantitative Structure-Activity Relationship) and QSPR (Quantitative Structure-Property Relationship) modeling.













### **The Wiener Index**

- Named for Harry Wiener (Chemist, Medical Doctor, Pharmaceutical Executive, Psychiatry Researcher)
- The First Topological Index (1947): originally called "The Path Number"
- Was the seed to further molecular descriptors such as using eigenvalues of distance matrices (Bonchev & Trinajstic, 1977)









### **The Distance Matrix**



- Real
- Symmetric
- Non-Negative
- Irreducible

Also uniquely determines a graph up to isomorphism!



### **The Wiener Index**

**Definition 2.2.** Let G be a connected graph with n vertices. Define

$$W(G) = \sum_{1 \le i < j \le n} D_{ij}.$$

In other words, W(G) is the sum of the distances between all unordered pairs of vertices. We refer to W(G) as the **Wiener index** of G.





### **S(G)**

**Definition 2.3.** Let G be a connected graph with n vertices. We define S(G) to be the sum:

$$S(G) = \sum_{u,v \in V(G)} dist(u,v)^2.$$







### The Wiener Index & S(G) limitations

The Wiener index & S(G) do not uniquely determine a graph (and hence the underlying structure of the molecule).

For example, consider the two graphs below.





 $0 < D_{\min} \leq \lambda_{\max} \leq D_{\max}$ 

Since distance matrices are real and non-negative, then by the Perron-Frobenius theorem we know that the largest eigenvalue is unique and positive. It is called the Perron root or the Perron-Frobenius eigenvalue.

Perron-Frobenius also gives us that  $\lambda_{max}$  is bounded by the minimum and maximum row sum.

Let D<sub>min</sub> and D<sub>max</sub> be the minimum and maximum row sum of the distance matrix respectively.





 $\Rightarrow$  10  $\leq \Lambda(E) \leq$  16





### $D_{\min} \leq \Lambda(G) \leq n(n-1)/2$

**Lemma 4.3.** Let  $D_M$  be the maximum row sum of the distance matrix D. Let G be a connected graph with n vertices and diameter d. Then

$$D_M \le \sum_{i=1}^{d-1} i + (n-d)(d) \le \frac{n(n-1)}{2}$$

and equality holds if and only if G is a path of length n-1.

 $D_{M}(E) \le 1 + 2 + (8-3)(3) = 18$ 

And we saw that actually,  $D_M(E) = 16$ .

## Bounds on the Largest Eigenvalue $D_{\min} \leq \Lambda(G) \leq n(n-1)/2$

**Corollary 4.3.1.** Let G be a path with n vertices, then the row sums of the distance matrix are not equal.

 $D_{G} = \begin{bmatrix} 0 & 1 & 2 & 3 & \dots & n-1 \\ 1 & 0 & 1 & 2 & 3 & \dots & n-2 \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & &$ 

$$D_{\min} \leq \Lambda(G) < n(n-1)/2$$

Using the Rayleigh Quotient, we can deduce that the upper bound is only equal to the largest row sum when the row sums are equivalent. So for  $n \ge 3$ , you have a strict less than n(n-1)/2.



$$2W(G)/n \leq \Lambda(G) < n(n-1)/2$$

**Lemma 5.3.** [6, Cor.7] Let  $\Lambda$  be the largest eigenvalue of the distance matrix, **D**. Then

$$\Lambda \geq \frac{2}{n}W(G)$$

with equality if and only if the row sums of D are all equal.

Previously,  $10 \le \Lambda(E) < 16$ . Now by Lemma 5.3,  $14.5 \le \Lambda(E) < 16$ .



### **Bounds on the Largest Eigenvalue** $2W(G)/n \leq \Lambda(G) < n(n-1)/2$

**Lemma 5.4.** [6, Cor.8] Let G be a connected graph with  $n \ge 2$  vertices and m edges. Then

$$\Lambda \geq 2(n-1) - \frac{2m}{n}$$

with equality if and only if  $G = K_n$  or G is a regular graph of diameter two.

Wiener Index still wins! This lower bound is always at most 2W(G)/n. But gives a way to express the lower bound in terms of edges of the graph.

Previously,  $14.5 \leq \Lambda(E) < 16$ . By Lemma 5.4,  $12.25 \le \Lambda(E)$ .



### Another Example: C<sub>20</sub>

D<sub>c</sub>=

Graph C:

C is distance-regular with diameter 5 and valency 3

3

| 0 | 1 | 2 | 2 | 1 | 2        | 3 | 3 | 4 | 5 | 4 | 4 | 3 | 3 | 2 | 1 | 2 | 2 | 3 | 3 |
|---|---|---|---|---|----------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 0 | 1 | 2 | 2 | 3        | 4 | 3 | 5 | 4 | 3 | 3 | 2 | 2 | 1 | 2 | 2 | 3 | 4 | 3 |
| 2 | 1 | 0 | 1 | 2 | 3        | 3 | 2 | 4 | 3 | 2 | 3 | 1 | 2 | 2 | 3 | 3 | 4 | 5 | 4 |
| 2 | 2 | 1 | 0 | 1 | 2        | 2 | 1 | 3 | 3 | 2 | 4 | 2 | 3 | 3 | 3 | 4 | 3 | 4 | 5 |
| 1 | 2 | 2 | 1 | 0 | 1        | 2 | 2 | 3 | 4 | 3 | 5 | 3 | 4 | 3 | 2 | 3 | 2 | 3 | 4 |
| 2 | 3 | 3 | 2 | 1 | 0        | 1 | 2 | 2 | 3 | 3 | 4 | 4 | 5 | 4 | 2 | 3 | 1 | 2 | 3 |
| 3 | 4 | 3 | 2 | 2 | 1        | 0 | 1 | 1 | 2 | 2 | 3 | 3 | 4 | 5 | 3 | 4 | 2 | 2 | 3 |
| 3 | 3 | 2 | 1 | 2 | 2        | 1 | 0 | 2 | 2 | 1 | 3 | 2 | 3 | 4 | 4 | 5 | 3 | 3 | 4 |
| 4 | 5 | 4 | 3 | 3 | 2        | 1 | 2 | 0 | 1 | 2 | 2 | 3 | 3 | 4 | 3 | 3 | 2 | 1 | 2 |
| 5 | 4 | 3 | 3 | 4 | 3        | 2 | 2 | 1 | 0 | 1 | 1 | 2 | 2 | 3 | 4 | 3 | 3 | 2 | 2 |
| 4 | 3 | 2 | 2 | 3 | 3        | 2 | 1 | 2 | 1 | 0 | 2 | 1 | 2 | 3 | 5 | 4 | 4 | 3 | 3 |
| 1 | 3 | 3 | 4 | 5 | 4        | 3 | 3 | 2 | 1 | 2 | 0 | 2 | 1 | 2 | 3 | 2 | 3 | 2 | 1 |
| 3 | 2 | 1 | 2 | 3 | 4        | 3 | 2 | 4 | 2 | 1 | 2 | 0 | 1 | 2 | 4 | 3 | 5 | 4 | 3 |
| 3 | 2 | 2 | 3 | 4 | <b>5</b> | 4 | 3 | 3 | 2 | 2 | 1 | 1 | 0 | 1 | 3 | 2 | 4 | 3 | 2 |
| 2 | 1 | 2 | 3 | 3 | 4        | 5 | 4 | 4 | 3 | 3 | 2 | 2 | 1 | 0 | 2 | 1 | 3 | 3 | 2 |
| 1 | 2 | 3 | 3 | 2 | 2        | 3 | 4 | 3 | 4 | 5 | 3 | 4 | 3 | 2 | 0 | 1 | 1 | 2 | 2 |
| 2 | 2 | 3 | 4 | 3 | 3        | 4 | 5 | 3 | 3 | 4 | 2 | 3 | 2 | 1 | 1 | 0 | 2 | 2 | 1 |
| 2 | 3 | 4 | 3 | 2 | 1        | 2 | 3 | 2 | 3 | 2 | 3 | 5 | 4 | 3 | 1 | 2 | 0 | 1 | 2 |
| 3 | 4 | 5 | 4 | 3 | 2        | 2 | 3 | 1 | 2 | 3 | 2 | 4 | 3 | 3 | 2 | 2 | 1 | 0 | 1 |
| 3 | 3 | 4 | 5 | 4 | 3        | 3 | 4 | 2 | 2 | 3 | 1 | 3 | 2 | 2 | 2 | 1 | 2 | 1 | 0 |

### Another Example: C<sub>20</sub>

Distance-Regular gives us Equal Row Sums  $(D_i = 50 \text{ for all } i)$ 

So, W(C) =<sup>1</sup>/<sub>2</sub> (20)(50) = 500

So by the Perron-Frobenius theorem,  $\Lambda(C) = 50.$ 



# Bounds on the Largest Eigenvalue of Graphs in Class $\ensuremath{\mathbb{G}}$

The previous two examples also belong to a special class of graphs that have *exactly one* positive eigenvalue for the distance matrix. We denote this class with **G**.

**G** includes:

- Infinite families such as:
  - Trees, C<sub>n</sub> (cycles), Johnson, Hamming,
    Cocktail Party, Double Half Cubes
- Dodecahedron & Icosahedron
- Petersen graph



# Bounds on the Largest Eigenvalue of Graphs in Class $\ensuremath{\mathbb{G}}$

**Lemma 5.1.** [6, Eqn (1)], Let G be a connected graph with  $n \ge 2$  vertices and let  $\lambda_i$   $(1 \le i \le n)$  be the eigenvalues of the distance matrix **D** of G. Then

$$\sum_{i=1}^{n} \lambda_i = 0.$$

**Lemma 5.2.** [6, Eqn (2)] Let G be a connected graph with  $n \ge 2$  vertices and let  $\lambda_i$   $(1 \le i \le n)$  be the eigenvalues of the distance matrix **D** of G. Then

$$\sum_{i=1}^n \lambda_i^2 = 2S(G)$$

### Bounds on the Largest Eigenvalue of Graphs in Class $\mathbb{G}$ $2W(G)/n \leq \Lambda(G) \leq n/[\Omega(h)/2)S(G)/n]$

**Theorem 6.2.** [6, Eqn(4)] Let  $G \in \mathbb{G}$  with  $n \geq 2$  vertices. Then

$$\Lambda \le \sqrt{\frac{2(n-1)}{n}S(G)},$$

with equality if and only if  $G = K_n$ .

Previously,  $14.5 \le \Lambda(E) < 16$ . By Thm 6.2,  $14.5 \le \Lambda(E) < 15.427$ . Compare to  $\Lambda(C) = 50$ . Thm 6.2 gives  $\Lambda(C) < 54.093$ .

### **Nordhaus-Gaddum Type Results**

**Theorem 7.2.** [6, Eqn (11)] Let G be a connected graph on  $n \ge 4$  vertices with a connected complement  $\overline{G}$ . Then

$$3(n-1) \le \Lambda(G) + \Lambda(\overline{G}) < \frac{n(n+3)}{2} - 3.$$

with left equality if and only if G and  $\overline{G}$  are both regular graphs of diameter two.

**Theorem 7.3.** [6, Eqn (12)] Let G be a connected graph on  $n \ge 4$  vertices with a connected complement  $\overline{G}$ . If  $G \in \mathbb{G}$  or  $\overline{G} \in \mathbb{G}$ , then

$$\Lambda(G) + \Lambda(\overline{G}) < \sqrt{\frac{(n+1)n(n-1)^2}{6}} + 2n - 3.$$

conjecture.



### **Questions** (as long as they aren't about chemistry :)

# Thank you to John Caughman and Derek Garton for the support on this incredible journey!



#### References

- Ghodratollah Aalipour, Aida Abiad, Zhanar Berikkyzy, Jay Cummings, Jessica De Silva, Wei Gao, Kristin Heysse, Leslie Hogbend, Franklin H.J. Kenter, Jephian C.-H.Lin, and Michael Taite. On the distance spectra of graphs. Linear Algebra and its Applications, 497:66–87, 2016.
- [2] D. Cao, V. Chvatal, A.J. Hoffman, and A. Vince. Variations on a theorem of ryser. *Linear Algebra and its Applications*, 260:215–222, 1997.
- [3] James Devillers and Alexandru T Balaban. Topological Indices and Related Descriptors in QSAR and QSPR. CRC Press, 2000.
- [4] K Roy, S Kar, and RN Das. A primer on QSAR/QSPR modeling: Fundamental Concepts. Springer-Verlag Inc., 2015.
- [5] Bo Zhou. On the largest eigenvalue of the distance matrix of a tree. MATCH Communications in Mathematical and Computer Chemistry, 58:657–662, 2007.
- [6] Bo Zhou and Nenad Trinajstic. On the largest eigenvalue of the distance matrix of a connected graph. *Chemical Physical Letters*, 447:384–387, 2007.

