$\left[\begin{array}{llllllll}0 & 1 & 1 & 2 & 2 & 2 & 1 & 1 \\ 1 & 0 & 2 & 1 & 1 & 1 & 2 & 2 \\ 1 & 2 & 0 & 3 & 3 & 3 & 2 & 2 \\ 2 & 1 & 3 & 0 & 2 & 2 & 3 & 3 \\ 2 & 1 & 3 & 2 & 0 & 2 & 3 & 3 \\ 2 & 1 & 3 & 2 & 2 & 0 & 3 & 3 \\ 1 & 2 & 2 & 3 & 3 & 3 & 0 & 2 \\ 1 & 2 & 2 & 3 & 3 & 3 & 2 & 0\end{array}\right]$

Bounds on the Largest Eigenvalue a of Distance Matrix

Natalie Denny

Advisor: John Caughman
Second Reader: Derek Garton
$\left[\begin{array}{llllllllllllllllllll}0 & 1 & 2 & 2 & 1 & 2 & 3 & 3 & 4 & 5 & 4 & 4 & 3 & 3 & 2 & 1 & 2 & 2 & 3 & 3 \\ 1 & 0 & 1 & 2 & 2 & 3 & 4 & 3 & 5 & 4 & 3 & 3 & 2 & 2 & 1 & 2 & 2 & 3 & 4 & 3 \\ 2 & 1 & 0 & 1 & 2 & 3 & 3 & 2 & 4 & 3 & 2 & 3 & 1 & 2 & 2 & 3 & 3 & 4 & 5 & 4 \\ 2 & 2 & 1 & 0 & 1 & 2 & 2 & 1 & 3 & 3 & 2 & 4 & 2 & 3 & 3 & 3 & 4 & 3 & 4 & 5 \\ 1 & 2 & 2 & 1 & 0 & 1 & 2 & 2 & 3 & 4 & 3 & 5 & 3 & 4 & 3 & 2 & 3 & 2 & 3 & 4 \\ 2 & 3 & 3 & 2 & 1 & 0 & 1 & 2 & 2 & 3 & 3 & 4 & 4 & 5 & 4 & 2 & 3 & 1 & 2 & 3 \\ 3 & 4 & 3 & 2 & 2 & 1 & 0 & 1 & 1 & 2 & 2 & 3 & 3 & 4 & 5 & 3 & 4 & 2 & 2 & 3 \\ 3 & 3 & 2 & 1 & 2 & 2 & 1 & 0 & 2 & 2 & 1 & 3 & 2 & 3 & 4 & 4 & 5 & 3 & 3 & 4 \\ 4 & 5 & 4 & 3 & 3 & 2 & 1 & 2 & 0 & 1 & 2 & 2 & 3 & 3 & 4 & 3 & 3 & 2 & 1 & 2 \\ 5 & 4 & 3 & 3 & 4 & 3 & 2 & 2 & 1 & 0 & 1 & 1 & 2 & 2 & 3 & 4 & 3 & 3 & 2 & 2 \\ 4 & 3 & 2 & 2 & 3 & 3 & 2 & 1 & 2 & 1 & 0 & 2 & 1 & 2 & 3 & 5 & 4 & 4 & 3 & 3 \\ 4 & 3 & 3 & 4 & 5 & 4 & 3 & 3 & 2 & 1 & 2 & 0 & 2 & 1 & 2 & 3 & 2 & 3 & 2 & 1 \\ 3 & 2 & 1 & 2 & 3 & 4 & 3 & 2 & 4 & 2 & 1 & 2 & 0 & 1 & 2 & 4 & 3 & 5 & 4 & 3 \\ 3 & 2 & 2 & 3 & 4 & 5 & 4 & 3 & 3 & 2 & 2 & 1 & 1 & 0 & 1 & 3 & 2 & 4 & 3 & 2 \\ 2 & 1 & 2 & 3 & 3 & 4 & 5 & 4 & 4 & 3 & 3 & 2 & 2 & 1 & 0 & 2 & 1 & 3 & 3 & 2 \\ 1 & 2 & 3 & 3 & 2 & 2 & 3 & 4 & 3 & 4 & 5 & 3 & 4 & 3 & 2 & 0 & 1 & 1 & 2 & 2 \\ 2 & 2 & 3 & 4 & 3 & 3 & 4 & 5 & 3 & 3 & 4 & 2 & 3 & 2 & 1 & 1 & 0 & 2 & 2 & 1 \\ 2 & 3 & 4 & 3 & 2 & 1 & 2 & 3 & 2 & 3 & 2 & 3 & 5 & 4 & 3 & 1 & 2 & 0 & 1 & 2 \\ 3 & 4 & 5 & 4 & 3 & 2 & 2 & 3 & 1 & 2 & 3 & 2 & 4 & 3 & 3 & 2 & 2 & 1 & 0 & 1 \\ 3 & 3 & 4 & 5 & 4 & 3 & 3 & 4 & 2 & 2 & 3 & 1 & 3 & 2 & 2 & 2 & 1 & 2 & 1 & 0\end{array}\right]$

Overview

- "On the Largest Eigenvalue of the Distance Matrix of a Connected Graph" by Bo Zhou and Nenad Trinajstic
- Application to Chemistry/Chemical Graph Theory
- The Distance Matrix of a Graph
- Bounds on the Largest Eigenvalue
- Nordhaus-Gaddum type result

Application to Chemistry

Eigenvalues of distance matrices are used in chemical QSAR (Quantitative Structure-Activity Relationship) and QSPR (Quantitative Structure-Property Relationship) modeling.

$$
\mathrm{C}_{2} \mathrm{H}_{6} \text { (Ethane) }
$$

C_{20} Fullerene

The Wiener Index

- Named for Harry Wiener (Chemist, Medical Doctor, Pharmaceutical Executive, Psychiatry Researcher)
- The First Topological Index (1947):
 originally called "The Path Number"
- Was the seed to further molecular descriptors such as using eigenvalues of distance matrices (Bonchev \& Trinajstic, 1977)

$$
\begin{aligned}
& {\left[\begin{array}{llllllll}
0 & 1 & 1 & 2 & 2 & 2 & 1 & 1 \\
1 & 0 & 2 & 1 & 1 & 1 & 2 & 2 \\
1 & 2 & 0 & 3 & 3 & 3 & 2 & 2 \\
2 & 1 & 3 & 0 & 2 & 2 & 3 & 3 \\
2 & 1 & 3 & 2 & 0 & 2 & 3 & 3 \\
2 & 1 & 3 & 2 & 2 & 0 & 3 & 3 \\
1 & 2 & 2 & 3 & 3 & 3 & 0 & 2 \\
1 & 2 & 2 & 3 & 3 & 3 & 2 & 0
\end{array}\right]} \\
& \mathrm{C}_{2} \mathrm{H}_{6} \\
& D_{E}=v_{4}^{v_{1}} \begin{array}{c}
v_{1} \\
v_{4} \\
v_{4} \\
v_{5} \\
v_{6} \\
v_{7} \\
v_{8} \\
v_{8}
\end{array}\left[\begin{array}{lllllllll}
v_{1} & v_{2} & v_{3} & v_{4} & v_{5} & v_{6} & v_{7} & v_{8} \\
0 & 1 & 1 & 2 & 2 & 2 & 1 & 1 \\
1 & 0 & 2 & 1 & 1 & 1 & 2 & 2 \\
1 & 2 & 0 & 3 & 3 & 3 & 2 & 2 \\
2 & 1 & 3 & 0 & 2 & 2 & 3 & 3 \\
2 & 1 & 3 & 2 & 0 & 2 & 3 & 3 \\
2 & 1 & 3 & 2 & 2 & 0 & 3 & 3 \\
1 & 2 & 2 & 3 & 3 & 3 & 0 & 2 \\
1 & 2 & 2 & 3 & 3 & 3 & 2 & 0
\end{array}\right]
\end{aligned}
$$

The Distance Matrix

$$
\mathbf{D}_{\mathrm{E}}=\begin{aligned}
& \mathrm{v}_{1} \\
& \mathrm{v}_{2} \\
& \mathrm{v}_{3} \\
& \mathrm{v}_{4} \\
& \mathrm{v}_{5} \\
& \mathrm{v}_{6} \\
& \mathrm{v}_{7} \\
& \mathrm{v}_{8}
\end{aligned}\left[\begin{array}{llllllll}
\mathrm{v}_{1} & \mathrm{v}_{2} & \mathrm{v}_{3} & v_{4} & v_{5} & v_{6} & v_{7} & v_{8} \\
0 & 1 & 1 & 2 & 2 & 2 & 1 & 1 \\
1 & 0 & 2 & 1 & 1 & 1 & 2 & 2 \\
1 & 2 & 0 & 3 & 3 & 3 & 2 & 2 \\
2 & 1 & 3 & 0 & 2 & 2 & 3 & 3 \\
2 & 1 & 3 & 2 & 0 & 2 & 3 & 3 \\
2 & 1 & 3 & 2 & 2 & 0 & 3 & 3 \\
1 & 2 & 2 & 3 & 3 & 3 & 0 & 2 \\
1 & 2 & 2 & 3 & 3 & 3 & 2 & 0
\end{array}\right]
$$

- Real
- Symmetric
- Non-Negative
- Irreducible

Also uniquely determines a graph up to isomorphism!

The Wiener Index

Definition 2.2. Let G be a connected graph with n vertices. Define

$$
W(G)=\sum_{1 \leq i<j \leq n} D_{i j} .
$$

In other words, $W(G)$ is the sum of the distances between all unordered pairs of vertices. We refer to $W(G)$ as the Wiener index of G.

$$
\mathrm{D}_{\mathrm{E}}=\begin{aligned}
& \mathrm{v}_{1} \\
& \mathrm{v}_{2} \\
& v_{3} \\
& v_{4} \\
& v_{5}
\end{aligned}\left[\begin{array}{ccccccccc}
v_{1} & v_{2} & v_{3} & v_{4} & v_{5} & v_{6} & v_{7} & v_{8} \\
0 & 1 & 1 & 2 & 2 & 2 & 1 & 1 \\
1 & 0 & 2 & 1 & 1 & 1 & 2 & 2 \\
1 & 2 & 0 & 3 & 3 & 3 & 2 & 2 \\
2 & 1 & 3 & 0 & 2 & 2 & 3 & 3 \\
2 & 1 & 3 & 2 & 0 & 2 & 3 & 3
\end{array}\right] \Rightarrow \mathbf{N}(E)=58
$$

S(G)

Definition 2.3. Let G be a connected graph with n vertices. We define $S(G)$ to be the sum:

$$
S(G)=\sum_{u, v \in V(G)} \operatorname{dist}(u, v)^{2} .
$$

$$
D_{E}=\begin{aligned}
& v_{1} \\
& v_{2} \\
& v_{2} \\
& v_{3} \\
& v_{4} \\
& v_{5} \\
& v_{6} \\
& v_{6} \\
& v_{7} \\
& v_{8} \\
& v_{8}
\end{aligned}\left[\begin{array}{cccccccc}
v_{1} & v_{2} & v_{3} & v_{4} & v_{5} & v_{6} & v_{7} & v_{8} \\
0 & 1 & 1 & 2 & 2 & 2 & 1 & 1 \\
1 & 0 & 2 & 1 & 1 & 1 & 2 & 2 \\
1 & 2 & 0 & 3 & 3 & 3 & 2 & 2 \\
2 & 1 & 3 & 0 & 2 & 2 & 3 & 3 \\
2 & 1 & 3 & 2 & 0 & 2 & 3 & 3 \\
2 & 1 & 3 & 2 & 2 & 0 & 3 & 3 \\
1 & 2 & 2 & 3 & 3 & 3 & 0 & 2 \\
1 & 2 & 2 & 3 & 3 & 3 & 2 & 0
\end{array}\right] \Rightarrow \mathbf{S}(\mathbf{E})=\mathbf{1 3 6}
$$

The Wiener Index \& S(G) limitations

The Wiener index \& $S(G)$ do not uniquely determine a graph (and hence the underlying structure of the molecule).

For example, consider the two graphs below.

$$
W\left(G_{1}\right)=8
$$

$$
\mathrm{S}\left(\mathrm{G}_{1}\right)^{1}=12
$$

$W\left(G_{2}\right)=8$
$S\left(\mathrm{G}_{2}\right)=12$

Bounds on the Largest Eigenvalue

$0<D_{\text {min }} \leq \lambda_{\text {max }} \leq D_{\text {max }}$

Since distance matrices are real and non-negative, then by the
Perron-Frobenius theorem we know that the largest eigenvalue is unique and positive. It is called the Perron root or the Perron-Frobenius eigenvalue.
Perron-Frobenius also gives us that $\lambda_{\max }$ is bounded by the minimum and maximum row sum.
Let $D_{\text {min }}$ and $D_{\max }$ be the minimum and maximum row sum of the distance matrix respectively.

Bounds on the Largest Eigenvalue

$$
\begin{aligned}
& \mathrm{D}_{\text {min }} \leq \boldsymbol{\Lambda}(\mathrm{G}) \leq \\
& D_{\text {max }} \\
& D_{E}=\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4} \\
v_{5} \\
v_{6} \\
v_{7} \\
v_{8}
\end{array}\left[\begin{array}{cccccccc}
v_{1} & v_{2} & v_{3} & v_{4} & v_{5} & v_{6} & v_{7} & v_{8} \\
0 & 1 & 1 & 2 & 2 & 2 & 1 & 1 \\
1 & 0 & 2 & 1 & 1 & 1 & 2 & 2 \\
1 & 2 & 0 & 3 & 3 & 3 & 2 & 2 \\
2 & 1 & 3 & 0 & 2 & 2 & 3 & 3 \\
2 & 1 & 3 & 2 & 0 & 2 & 3 & 3 \\
2 & 1 & 3 & 2 & 2 & 0 & 3 & 3 \\
1 & 2 & 2 & 3 & 3 & 3 & 0 & 2 \\
1 & 2 & 2 & 3 & 3 & 3 & 2 & 0
\end{array}\right] \\
& \Rightarrow 10 \leq \Lambda(\mathrm{E}) \leq 16
\end{aligned}
$$

Bounds on the Largest Eigenvalue

$\mathrm{D}_{\text {min }} \leq \boldsymbol{\Lambda}(\mathrm{G}) \leq \mathrm{n}(\mathrm{n}-1) / 2$
 D

What about that maximum row sum?

Bounds on the Largest Eigenvalue

$D_{\text {min }} \leq \Lambda(G) \leq n(n-1) / 2$

Lemma 4.3. Let D_{M} be the maximum row sum of the distance matrix D. Let G be a connected graph with n vertices and diameter d. Then

$$
D_{M} \leq \sum_{i=1}^{d-1} i+(n-d)(d) \leq \frac{n(n-1)}{2}
$$

and equality holds if and only if G is a path of length $n-1$.

$$
D_{M}(E) \leq 1+2+(8-3)(3)=18
$$

And we saw that actually, $D_{M}(E)=16$.

Bounds on the Largest Eigenvalue

$D_{\text {min }} \leq \Lambda(G) \leq n(n-1) / 2$

Corollary 4.3.1. Let G be a path with n vertices, then the row sums of the distance matrix are not equal.

$$
D_{G}=\left[\begin{array}{lllllll}
0 & 1 & 2 & 3 & & \cdots & \\
1 & 0 & 1 & 2 & 3 & \cdots & \\
n-1 \\
& & & & & & \\
& & & & & & \\
& & & & & & \\
& & & & & &
\end{array}\right]
$$

Bounds on the Largest Eigenvalue

$\mathrm{D}_{\text {min }} \leq \Lambda(\mathrm{G})<\mathrm{n}(\mathrm{n}-1) / 2$

Using the Rayleigh Quotient, we can deduce that the upper bound is only equal to the largest row sum when the row sums are equivalent. So for $n \geq 3$, you have a strict less than $n(n-1) / 2$.

$$
D_{G}=\left[\begin{array}{lllllll}
0 & 1 & 2 & 3 & & \cdots & \\
1 & 0 & 1 & 2 & 3 & \cdots & \\
n-1 \\
& & & & & & \\
& & & & & & \\
& & & & & & \\
& & & & & &
\end{array}\right]
$$

Bounds on the Largest Eigenvalue

$2 \mathrm{~W}(\mathrm{\Phi}) / \mathrm{n} \leq \boldsymbol{n}(\mathrm{G})<\mathrm{n}(\mathrm{n}-1) / 2$

Lemma 5.3. [6, Cor.7] Let Λ be the largest eigenvalue of the distance matrix, D. Then

$$
\Lambda \geq \frac{2}{n} W(G)
$$

with equality if and only if the row sums of \boldsymbol{D} are all equal.
Previously, $10 \leq \Lambda(E)<16$.
Now by Lemma 5.3, $14.5 \leq \Lambda(E)<16$.

Bounds on the Largest Eigenvalue

$2 \mathrm{~W}(\mathrm{G}) / \mathrm{n} \leq \Lambda(\mathrm{G})<\mathrm{n}(\mathrm{n}-1) / 2$

Lemma 5.4. [6, Cor.8] Let G be a connected graph with $n \geq 2$ vertices and m edges. Then

$$
\Lambda \geq 2(n-1)-\frac{2 m}{n}
$$

with equality if and only if $G=K_{n}$ or G is a regular graph of diameter two.
This lower bound is always at most $2 \mathrm{~W}(\mathrm{G}) / \mathrm{n}$. But gives a way to express the lower bound in terms of edges of the graph.

$$
\begin{aligned}
& \text { Previously, } 14.5 \leq \boldsymbol{\Lambda}(\mathrm{E})<16 \\
& \text { By Lemma } 5.4,12.25 \leq \boldsymbol{\Lambda}(\mathrm{E})
\end{aligned}
$$

Another Example: C_{20}

Graph C:

C is distance-regular with diameter 5 and valency 3
$\mathbf{D}_{\mathbf{C}}=\left[\begin{array}{llllllllllllllllllll}0 & 1 & 2 & 2 & 1 & 2 & 3 & 3 & 4 & 5 & 4 & 4 & 3 & 3 & 2 & 1 & 2 & 2 & 3 & 3 \\ 1 & 0 & 1 & 2 & 2 & 3 & 4 & 3 & 5 & 4 & 3 & 3 & 2 & 2 & 1 & 2 & 2 & 3 & 4 & 3 \\ 2 & 1 & 0 & 1 & 2 & 3 & 3 & 2 & 4 & 3 & 2 & 3 & 1 & 2 & 2 & 3 & 3 & 4 & 5 & 4 \\ 2 & 2 & 1 & 0 & 1 & 2 & 2 & 1 & 3 & 3 & 2 & 4 & 2 & 3 & 3 & 3 & 4 & 3 & 4 & 5 \\ 1 & 2 & 2 & 1 & 0 & 1 & 2 & 2 & 3 & 4 & 3 & 5 & 3 & 4 & 3 & 2 & 3 & 2 & 3 & 4 \\ 2 & 3 & 3 & 2 & 1 & 0 & 1 & 2 & 2 & 3 & 3 & 4 & 4 & 5 & 4 & 2 & 3 & 1 & 2 & 3 \\ 3 & 4 & 3 & 2 & 2 & 1 & 0 & 1 & 1 & 2 & 2 & 3 & 3 & 4 & 5 & 3 & 4 & 2 & 2 & 3 \\ 3 & 3 & 2 & 1 & 2 & 2 & 1 & 0 & 2 & 2 & 1 & 3 & 2 & 3 & 4 & 4 & 5 & 3 & 3 & 4 \\ 4 & 5 & 4 & 3 & 3 & 2 & 1 & 2 & 0 & 1 & 2 & 2 & 3 & 3 & 4 & 3 & 3 & 2 & 1 & 2 \\ 5 & 4 & 3 & 3 & 4 & 3 & 2 & 2 & 1 & 0 & 1 & 1 & 2 & 2 & 3 & 4 & 3 & 3 & 2 & 2 \\ 4 & 3 & 2 & 2 & 3 & 3 & 2 & 1 & 2 & 1 & 0 & 2 & 1 & 2 & 3 & 5 & 4 & 4 & 3 & 3 \\ 4 & 3 & 3 & 4 & 5 & 4 & 3 & 3 & 2 & 1 & 2 & 0 & 2 & 1 & 2 & 3 & 2 & 3 & 2 & 1 \\ 3 & 2 & 1 & 2 & 3 & 4 & 3 & 2 & 4 & 2 & 1 & 2 & 0 & 1 & 2 & 4 & 3 & 5 & 4 & 3 \\ 3 & 2 & 2 & 3 & 4 & 5 & 4 & 3 & 3 & 2 & 2 & 1 & 1 & 0 & 1 & 3 & 2 & 4 & 3 & 2 \\ 2 & 1 & 2 & 3 & 3 & 4 & 5 & 4 & 4 & 3 & 3 & 2 & 2 & 1 & 0 & 2 & 1 & 3 & 3 & 2 \\ 1 & 2 & 3 & 3 & 2 & 2 & 3 & 4 & 3 & 4 & 5 & 3 & 4 & 3 & 2 & 0 & 1 & 1 & 2 & 2 \\ 2 & 2 & 3 & 4 & 3 & 3 & 4 & 5 & 3 & 3 & 4 & 2 & 3 & 2 & 1 & 1 & 0 & 2 & 2 & 1 \\ 2 & 3 & 4 & 3 & 2 & 1 & 2 & 3 & 2 & 3 & 2 & 3 & 5 & 4 & 3 & 1 & 2 & 0 & 1 & 2 \\ 3 & 4 & 5 & 4 & 3 & 2 & 2 & 3 & 1 & 2 & 3 & 2 & 4 & 3 & 3 & 2 & 2 & 1 & 0 & 1 \\ 3 & 3 & 4 & 5 & 4 & 3 & 3 & 4 & 2 & 2 & 3 & 1 & 3 & 2 & 2 & 2 & 1 & 2 & 1 & 0\end{array}\right]$

Another Example: \mathbf{C}_{20}

Distance-Regular gives us Equal Row Sums

$$
\left(D_{i}=50 \text { for all } i\right)
$$

So, $W(C)=1 / 2(20)(50)=500$
So by the Perron-Frobenius theorem,

$$
\Lambda(C)=50 .
$$

Bounds on the Largest Eigenvalue of Graphs in Class \mathbb{G}

The previous two examples also belong to a special class of graphs that have exactly one positive eigenvalue for the distance matrix. We denote this class with \mathbb{G}.
G includes:

- Infinite families such as:
- Trees, C (cycles), Johnson, Hamming, Cocktail Party, Double Half Cubes
- Dodecahedron \& Icosahedron
- Petersen graph

Bounds on the Largest Eigenvalue of Graphs in Class \mathbb{G}

Lemma 5.1. [6, Eqn (1)], Let G be a connected graph with $n \geq 2$ vertices and let $\lambda_{i}(1 \leq i \leq n)$ be the eigenvalues of the distance matrix D of G. Then

$$
\sum_{i=1}^{n} \lambda_{i}=0
$$

Lemma 5.2. [6, Eqn (2)] Let G be a connected graph with $n \geq 2$ vertices and let $\lambda_{i}(1 \leq i \leq n)$ be the eigenvalues of the distance matrix D of G. Then

$$
\sum_{i=1}^{n} \lambda_{i}^{2}=2 S(G)
$$

Bounds on the Largest Eigenvalue of Graphs in Class \mathbb{G}

$2 \mathrm{~W}(\mathrm{G}) / \mathrm{n} \leq \Lambda(\mathrm{G}) \leq \mathrm{n}(\mathrm{Z}+\mathbb{(1) / 2)} / \mathrm{S}(\mathrm{G}) / \mathrm{n}]$

Theorem 6.2. [6, Eqn(4)] Let $G \in \mathbb{G}$ with $n \geq 2$ vertices. Then

$$
\Lambda \leq \sqrt{\frac{2(n-1)}{n} S(G)}
$$

with equality if and only if $G=K_{n}$.

Previously, $14.5 \leq \Lambda(E)<16$.
By Thm 6.2, $14.5 \leq \boldsymbol{\Lambda}$ (E) <15.427.

Compare to $\boldsymbol{\Lambda}(\mathrm{C})=50$.
Thm 6.2 gives $\boldsymbol{\Lambda}(\mathrm{C})<54.093$.

Nordhaus-Gaddum Type Results

Theorem 7.2. [6, Eqn (11)] Let G be a connected graph on $n \geq 4$ vertices with a connected complement \bar{G}. Then

$$
3(n-1) \leq \Lambda(G)+\Lambda(\bar{G})<\frac{n(n+3)}{2}-3
$$

with left equality if and only if G and \bar{G} are both regular graphs of diameter two.

Thcorem 7.3. [6, Eqn (12)] Let G be a connected graph on $n \geq 4$ vertices with a connected complement \bar{G}. If $G \in \mathbb{G}$ or $\bar{G} \in \mathbb{G}$, then

$$
\Lambda(G)+\Lambda(\bar{G})<\sqrt{\frac{(n+1) n(n-1)^{2}}{6}}+2 n-3
$$

Questions
 (as long as they aren't about chemistry :)

Thank you to John Caughman and Derek Garton for the support on this incredible journey!

References

[1] Ghodratollah Aalipour, Aida Abiad, Zhanar Berikkyzy, Jay Cummings, Jessica De Silva, Wei Gao, Kristin Heysse, Leslie Hogbend, Franklin H.J. Kenter, Jephian C.-H.Lin, and Michael Taite. On the distance spectra of graphs. Linear Algebra and its Applications, 497:66-87, 2016.
[2] D. Cao, V. Chvatal, A.J. Hoffman, and A. Vince. Variations on a theorem of ryser. Linear Algebra and its Applications, 260:215-222, 1997.
[3] James Devillers and Alexandru T Balaban. Topological Indices and Related Descriptors in QSAR and QSPR. CRC Press, 2000.
[4] K Roy, S Kar, and RN Das. A primer on $Q S A R / Q S P R$ modeling: Fundamental Concepts. Springer-Verlag Inc., 2015.
[5] Bo Zhou. On the largest eigenvalue of the distance matrix of a tree. MATCH Communications in Mathematical and Computer Chemistry, 58:657-662, 2007.
[6] Bo Zhou and Nenad Trinajstic. On the largest eigenvalue of the distance matrix of a connected graph. Chemical Physical Letters, 447:384-387, 2007.

